[seopress_breadcrumbs]
How does Ultrasonic Technology Clean
Cavitation bubbles are vacuum cavities as tiny as red blood cells, or about 8 thousandths of a millimeter across. They are so small that it would take 1,250 of them lined up in a row to reach 1 cm long.
Under pressure of continuous vibration, these bubbles stretch and compress at a fast rate. Once they reach a certain size, as determined by the frequency and strength of the sound waves produced, the bubbles lose structural integrity and collapse violently. When these implosions happen near a surface, the bubbles emit high-powered streams of plasma that travel at more than 500 miles per hour and collide with, agitate and remove even very tiny particles and substances from that surface.
In an ultrasonic cleaning machine, this happens millions of times per second, but because cavitation bubbles are so small the process is both highly effective and very gentle. Ultrasonic technology can be used to clean metals, plastics, glass, rubber and ceramics. It effectively removes a wide variety of contaminants, even if present only in trace amounts, including dust, dirt, rust, oil, grease, soot, mold, carbon deposits, polishing compounds, wax, pigments, lime scale, bacteria, algae, fungus, fingerprints and biological soil.
These contaminants typically are removed even if they are tightly adhered to or embedded onto solid surfaces, or if they are in remote cracks or tiny crevices of an object. For this reason, items usually do not need to be disassembled before being put safely in an ultrasonic cleaning unit.